Lesson 3. The Dot Product

1 Today...

- Definition and properties of the dot product
- Dot products and angles between vectors

2 The dot product

- We know how to multiply a vector by a scalar
- Can we multiply two vectors together? Yes!
- If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, the dot product of \vec{a} and \vec{b} is
- Note that $\vec{a} \cdot \vec{b}$ is a scalar
- The dot product of vectors in \mathbb{R}^{2} is defined similarly: if $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}\right\rangle$, then

Example 1.

a. $\langle-1,7\rangle \cdot\langle 6,2\rangle=$
b. $\langle 2,4,1\rangle \cdot\langle-1,3,1\rangle=$ \square
c. $(-\vec{i}+3 \vec{k}+4 \vec{j}) \cdot(\vec{i}-3 \vec{k})=$

- Properties of the dot product

$$
\begin{array}{rlrl}
\vec{a} \cdot \vec{a} & =|a|^{2} & (c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b}) \\
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{a} & \overrightarrow{0} \cdot \vec{a}=0 \\
\vec{a} \cdot(\vec{b}+\vec{c}) & =\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} & &
\end{array}
$$

- The dot product behaves very similarly to ordinary products of real numbers

Example 2. Show the first property above: $\vec{a} \cdot \vec{a}=|a|^{2}$.

3 Dot products and angles

- The angle θ between two vectors \vec{a} and \vec{b} :

- We always take the angle so that $0 \leq \theta \leq \pi$
- If \vec{a} and \vec{b} are scalar multiples of one another, we say that the vectors are parallel
- If \vec{a} and \vec{b} are parallel, then $\theta=\square$
- If θ is the angle between vectors \vec{a} and \vec{b}, then
\Rightarrow If θ is the angle between nonzero vectors \vec{a} and \vec{b}, then

Example 3. Find the angle between vectors $\vec{a}=\langle 2,-1,3\rangle$ and $\vec{b}=\langle-3,2,5\rangle$.

- Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\theta=\pi / 2$
- Suppose \vec{a} and \vec{b} are nonzero
- If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b}=$
- If $\vec{a} \cdot \vec{b}=0$, then $\cos \theta=\square$ and $\operatorname{so} \theta=$ \square
\Rightarrow Two vectors \vec{a} and \vec{b} are orthogonal if and only if \square

Example 4. Show that $2 \vec{i}-\vec{j}+2 \vec{k}$ is perpendicular to $5 \vec{i}+2 \vec{j}-4 \vec{k}$.

- The dot product measures the extent to which \vec{a} and \vec{b} point in the same direction
\circ

\square
\circ

\circ

