Lesson 3. The Dot Product

1 Today...

- Definition and properties of the dot product
- Dot products and angles between vectors

2 The dot product

- We know how to multiply a vector by a scalar
- Can we multiply two vectors together? Yes!
- If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, the **dot product** of \vec{a} and \vec{b} is
- Note that $\vec{a} \cdot \vec{b}$ is a scalar
- The dot product of vectors in \mathbb{R}^2 is defined similarly: if $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then

Example 1.

• Properties of the dot product

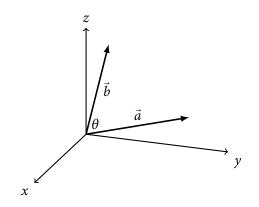
$$\vec{a} \cdot \vec{a} = |a|^2 \qquad (c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \qquad \vec{0} \cdot \vec{a} = 0$$
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

• The dot product behaves very similarly to ordinary products of real numbers

Example 2. Show the first property above: $\vec{a} \cdot \vec{a} = |a|^2$.

3 Dot products and angles

• The **angle** θ between two vectors \vec{a} and \vec{b} :



- We always take the angle so that $0 \le \theta \le \pi$
- If \vec{a} and \vec{b} are scalar multiples of one another, we say that the vectors are **parallel**
 - If \vec{a} and \vec{b} are parallel, then θ =
- If θ is the angle between vectors \vec{a} and \vec{b} , then
- \Rightarrow If θ is the angle between nonzero vectors \vec{a} and \vec{b} , then

Example 3. Find the angle between vectors $\vec{a} = \langle 2, -1, 3 \rangle$ and $\vec{b} = \langle -3, 2, 5 \rangle$.

- Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\theta = \pi/2$
- Suppose \vec{a} and \vec{b} are nonzero

 \Rightarrow

• If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b} =$	
• If $\vec{a} \cdot \vec{b} = 0$, then $\cos \theta =$	and so $\theta =$
Two vectors \vec{a} and \vec{b} are orthogonal if and only if	

Example 4. Show that $2\vec{i} - \vec{j} + 2\vec{k}$ is perpendicular to $5\vec{i} + 2\vec{j} - 4\vec{k}$.

• The dot product measures the extent to which \vec{a} and \vec{b} point in the same direction

